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Abstract. Deep neural networks, albeit their great success on feature
learning in various computer vision tasks, are usually considered as im-
practical for online visual tracking because they require very long training
time and a large number of training samples. In this work, we present an
efficient and very robust online tracking algorithm using a single Convo-
lutional Neural Network (CNN) for learning effective feature represen-
tations of the target object over time. Our contributions are multifold:
First, we introduce a novel truncated structural loss function that main-
tains as many training samples as possible and reduces the risk of track-
ing error accumulation, thus drift, by accommodating the uncertainty of
the model output. Second, we enhance the ordinary Stochastic Gradient
Descent approach in CNN training with a temporal selection mechanism,
which generates positive and negative samples within different time pe-
riods. Finally, we propose to update the CNN model in a “lazy” style to
speed-up the training stage, where the network is updated only when a
significant appearance change occurs on the object, without sacrificing
tracking accuracy. The CNN tracker outperforms all compared state-of-
the-art methods in our extensive evaluations that involve 18 well-known
benchmark video sequences.

1 Introduction

Image features play a crucial role in many challenging computer vision tasks
such as object recognition and detection. Unfortunately, in many online visual
trackers features are manually defined and combined [1–4]. Even though these
methods report satisfactory results on individual datasets, hand-crafted feature
representations would limit the performance of tracking. For instance, normal-
ized cross correlation, which would be discriminative when the lighting condition
is favourable, might become ineffective when the object moves under shadow.
This necessitates good representation learning mechanisms for visual tracking
that are capable of capturing the appearance effectively changes over time.

Recently, deep neural networks have gained significant attention thanks to
their success on learning feature representations. Different from the traditional
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hand-crafted features [5–7], a multi-layer neural network architecture can effi-
ciently capture sophisticated hierarchies describing the raw data [8]. In particu-
lar, the Convolutional Neural Networks (CNN) has shown superior performance
on standard object recognition tasks [9–11], which effectively learn complicated
mappings while utilizing minimal domain knowledge.

However, the immediate adoption of CNN for online visual tracking is not
straightforward. First of all, CNN requires a large number of training samples,
which is often not be available in visual tracking as there exist only a few number
of reliable positive instances extracted from the initial frames. Moreover, CNN
tends to easily overfit to the most recent observation, e.g., most recent instance
dominating the model, which may result in drift problem. Besides, CNN training
is computationally intensive for online visual tracking. Due to these difficulties,
CNN has been treated only as an offline feature extraction step on predefined
datasets [12, 13] for tracking applications so far.

In this work, we propose a novel tracking algorithm using CNN to auto-
matically learn the most useful feature representations of particular target ob-
jects while overcoming the above challenges. We employ a tracking-by-detection
strategy – a three-layer CNN model to distinguish the target object from its
surrounding background. We update this CNN model in an online manner. Our
CNN generates scores for all possible hypotheses of the object locations (object
states) in a given frame. The hypothesis with the highest score is then selected
as the prediction of the object state in the current frame.

Typically, tracking-by-detection approaches rely on predefined heuristics to
sample from the estimated object location to construct a set of positive and
negative samples. Often these samples have binary labels, which leads to a few
positive samples and a large negative training set. As a result, the model deteri-
oration in case of a slight inaccuracy during tracking might happen [4]. Besides,
the object locations, except the one on the first frame, is not always reliable as
they are estimated by the visual tracker and the uncertainty is unavoidable [14].
To address these two issues, our CNN model employs a special type of loss func-
tion that consists of a robust term, a structural term, and a truncated norm. The
structural term makes it possible to obtain a large number of training samples
that have different significance levels considering the uncertainty of the object
location at the same time. The robust term enables considering multiple object
location estimates during the tracking process rather than being confined into
the single, best location estimates at each frame. The truncated norm is applied
on the CNN response to reduce the number of samples in the back-propagation
[9, 10] stage to significantly accelerate the training process.

We employ the Stochastic Gradient Decent (SGD) method to optimize the
parameters in the CNN model. Since the standard SGD algorithm is not tailored
for online visual tracking, we propose the following two modifications. First, to
prevent the CNN model from overfitting to occasionally detected false positive
instances, we introduce a temporal sampling mechanism to the batch generation
in the SGD algorithm. This temporal sampling mechanism assumes that the
object patches shall stay longer than those of the background in the memory.
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Therefore, we store all the observed image patches into training sample pool, and
we choose the positive samples from a temporal range longer than the negative
ones. In practice, we found this is a key factor in the robust CNN-based tracker,
because discriminative sampling strategy successfully regularizes the training for
effective appearance model.

Second, we use multiple image cues (low-level image features, such as normal-
ized gray-scale image and image gradient) as independent channels as network
input. We update the CNN parameters by iteratively training each channel in-
dependently followed by a joint training using their fully-connected layers. This
makes the training efficient and empirically we observed that this two-stage it-
erative procedure is more accurate than jointly training for all cues.

Finally, in order to increase the tracking speed of the CNN-based tracker to
a practical level, we propose to update the CNN model in a “lazy” style. The
intuition behind this lazy updating strategy is that we assume that the object
appearance is more consistent over the video, compared with the background
appearances. The CNN-model is only updated when a significant appearance
change occurs on the object. In practice, this lazy updating strategy increases
the tracking speed significantly without causing any observable accuracy loss.

To summarize, our main contributions include:

– A visual tracker based on online adapting CNN is proposed. As far as we
are aware, this is the first time a single CNN is introduced for learning the
best features for object tracking in an online manner.

– A robust, structural, and truncated loss function is exploited for the online
CNN tracker. This enables us to achieve very reliable (best reported results
in the literature) and robust tracking while achieving tracking speeds up to
2.2 fps.

– An iterative SGD method with a temporal sampling mechanism is introduced
for competently capturing object appearance changes.

Our experiments on an extensive dataset of 18 videos from recent bench-
marks demonstrate that our method outperforms 9 state-of-the-art algorithms
and rarely loses the track of the objects. In addition, it achieves a practical
tracking speed (from 0.8fps to 2.2fps depending on the sequence and settings),
which is comparable to many other visual trackers.

2 CNN Architecture

2.1 CNN with multiple image cues

Our CNN consists of two convolutional layers, corresponding sigmoid functions
as activation neurons and average pooling operators. The dark gray block in
Fig. 1 shows the structure of our network, which can be expressed as (32×32)−
(10× 10× 6)− (1× 1× 12)− (2) in conventional neural network notation.

The input is locally normalized 32×32 image patches, which draws a balance
between the representation power and computational load. The first convolution
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Fig. 1. The architecture of our CNN tracker with multiple image cues.

layer contains 6 kernels each of size 13 × 13 (an empirical trade-off between
overfitting due to a very large number of kernels and discrimination power),
followed by a pooling operation that reduces the obtained feature map (filter
response) to a lower dimension. The second layer contains 72 kernels with size
9×9. This leads to a 12 dimensional feature vector in the second layer, after the
pooling operation in this layer.

The fully connected layer is a logistic regression operation. It takes the 12D
vector computed by the first two layers and generates the score vector s =
[s1, s2]T ∈ R2, with s1 and s2 corresponding to the positive score and negative
score, respectively. In order to increase the margin between the scores of the
positive and negative samples, we calculate the CNN score of the patch n as

f(xn;Ω) = Sn = s1 · exp(s1 − s2), (1)

where xn denotes the input and the CNN is parameterized by the weights Ω.

Effective object tracking requires multiple cues, which may include color,
image gradients and different pixel-wise filter responses. These cues are weakly
correlated yet contain complementary information. Local contrast normalized
cues are previously shown [10] to produce accurate object detection and recog-
nition results within the CNN frameworks. The normalization not only alleviates
the saturation problem but also makes the CNN robust to illumination change,
which is desired during the tracking. In this work, we use 4 image cues gener-
ated from the given gray-scale image, i.e., three locally normalized images with
different parameter configurations 4 and a gradient image. We let CNN to se-
lect the most informative cues in a data driven fashion. By concatenating the
final responses of these 4 cues, we build a fully connected layer to the binary

4 Two parameters rµ and rσ determine a local contrast normalization process. In this
work, we use three configurations, i.e., {rµ = 3, rσ = 1}, {rµ = 3, rσ = 3} and
{rµ = 5, rσ = 5}, respectively.
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output vector (the green dashed block in Fig. 1). Note that we can find similar
architectures in the literature [15–17].

2.2 Robust, structural, truncated loss function

Structural loss: Let xn and ln ∈ {[0, 1]T, [1, 0]T} denote the cue of the input
patch and its ground truth label (background or foreground5) respectively, and
f(xn;Ω) be the predicted score of xn with network weights Ω, the objective
function of N samples in the batch is

L =
1

N

N∑
n=1

‖f(xn;Ω)− ln‖2 (2)

when the CNN is trained in the batch-mode. Equation 2 is a commonly used loss
function and performs well in binary classification problems. However, for object
localization tasks, usually higher performance can be obtained by ‘structurizing’
the binary classifier. The advantage of employing the structural loss is the larger
number of available training samples, which is crucial to the CNN training. In
the ordinary binary-classification setting, one can only use the training samples
with high confidences to avoid class ambiguity. In contrast, the structural CNN
is learned based upon all the sampled patches.

We modify the original CNN’s output to f(φ〈Γ,yn〉;Ω) ∈ R, where Γ is the
current frame, yn ∈ Ro is the motion parameter vector of the target object,
which determines the object’s location in Γ and o is the freedom degree6 of the
transformation. The operation φ〈Γ,yn〉 suffices to crop the features from Γ using
the motion yn. The associated structural loss is defined as

L =
1

N

N∑
n=1

[∆(yn,y
∗) · ‖f(φ〈Γ,yn〉;Ω)− ln‖2] , (3)

where y∗ is the (estimated) motion state of the target object in the current
frame. To define ∆(yn,y

∗) we first calculate the overlapping score Θ(yn,y
∗)

[18] as

Θ(yn,y
∗) =

area(r(yn)
⋂
r(y∗))

area(r(yn)
⋃
r(y∗))

(4)

where r(y) is the region defined by y,
⋂

and
⋃

denotes the intersection and
union operations respectively. Finally we have

∆(yn,y
∗) =

∣∣∣∣ 2

1 + exp(−(Θ(yn,y∗)− 0.5))
− 1

∣∣∣∣ ∈ [0, 1]. (5)

And the sample label ln is set as.

ln =

{
[1, 0]T if Θ(yn,y

∗) > 0.5
[0, 1]T elsewise

5 Here we follow the labeling style in conventional CNN training.
6 In this paper o = 3, i.e., the bounding box changes in its location and the scale.
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From Eq. 5 we can see that ∆(yn,y
∗) actually measures the importance of the

training patch n. For instance, patches that are very close to object center and
reasonably far from it may play more significant roles in training the CNN, while
the patches in between are less important.

Structural Loss with a Robust Term and the Truncated Norm In visual
tracking, when a new frame Γ(t) comes, we predict the object motion state y∗(t)
as

y∗(t) = argmax
yn∈Y

(
f(φ〈Γ(t),yn〉;Ω)

)
, (6)

where Y contains all the test patches in the current frame. Among all motion
states y∗(t), ∀t = 1, 2, . . . , T , only the first one y∗(1) is always reliable as it is man-
ually defined. Other motion states are estimated based on the previous observa-
tions. Thus, the uncertainty of the prediction y(t), ∀t > 1 is usually unavoidable.
Recall that, the structural loss defined in Equation 4 could change significantly
if a minor perturbation is imposed on y(t), one requires a accurate y(t) in every
frame, which is, unfortunately, not feasible.

The Multiple-Instance-Learning (MIL) based approaches [14, 19] use the in-
stance bags, rather than individual instances as training samples, and the learn-
ing goal is to maximize the maximum score in the positive bag while minimize
those in the negative bags [14, 19]. Inspired by this idea, we regularize the ordi-
nary structural loss using a set of positive instances rather than only one positive
instance, which is novel in the state-of-the-art tracking-by-detection methods. In
frame t (t > 1), we define the positive instance set as

Y∗ = {yj | Θ(yj ,y
∗) < 0.5, f(φ〈Γ,yj〉;Ω) > ηf(φ〈Γ,y∗〉;Ω)}. (7)

It is easy to see that this set contains all the test samples with high scores and
far away from the prediction y∗. Here, we set η = 0.975, which is high enough
to eliminate most of the true negatives. Then, we define a robust term based on
yn and Y∗ as

r(yn,Y∗) = max

(
0, max

yj∈Y∗
2

1 + exp(−(Θ(yn,yj)− 0.5))
− 1

)
. (8)

We obtain the structural loss regularized by the positive set Y∗ as

L =
1

N

N∑
n=1

[(∆(yn,y
∗)− r(yn,Y∗)) · ‖f(φ〈Γ,yn〉;Ω)− ln‖2] , (9)

We can treat the above structural loss function as a robust version of the
loss defined in Equation 3. The weights of the training samples which have high
CNN score but far away from the prediction y∗ will be reduced significantly.
In practice, we observed this structural loss reduces error accumulation, which
usually starts from an incorrectly predicted y∗.

The effect of proposed robust structural loss is shown in Figure 2a, comparing
with other two conventional loss functions, i.e., the binary loss and the normal
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Fig. 2. (a) Illustration of the effects of different loss functions on negative samples.
The green block stands for the object location while the blue block is the prediction
of the visual tracker. The red blocks are the negative samples labeled according to
the prediction (which is incorrect). The thickness of the red blocks represent their
importance scores in the following training procedure. (b) Truncated l2 norm.

structural loss. We can see that, for a binary loss function, all the negative
blocks (in red) share the same training weight. For the normal structural loss,
those negative patches that overlap with the prediction (blue block) are assigned
smaller weights than those far away from the prediction. As a result, the real
object (green block) will be treated as a negative sample with a high importance,
which might confuse the classifier. In contrast, the robust structural loss will
reduce the weight around the green block as the prediction score for green block
is also high, which is, in practice, usually true. Consequently, the incorrectly
labeled object block will not play a dominant role in the consecutive training
stages, and thus the learned tracker achieve more robustness.

Finally, we speed up the CNN training by employing a truncated l2-norm
in our model. We empirically observe that patches with very small error does
not contribute much in the back propagation. Therefore, we can approximate
the loss by counting the patches with errors that are larger than a threshold.
Motived by this, we define a truncated l2 norm as

‖e‖T = ‖e‖2 · (1− 1[‖e‖2 ≤ β]) , (10)

where 1[·] denotes the indicator function while e is the prediction error, e.g.,
f(φ〈Γ,yn〉;Ω)− ln for patch-n. This truncated norm is visualized in Fig. 2b and
now Eq. 9 becomes:

L =
1

N

N∑
n=1

[(∆(yn,y
∗)− r(yn,Y∗)) · ‖f(φ〈Γ,yn〉;Ω)− ln‖T] , (11)

It is easy to see that with the truncated norm ‖ · ‖T, the backpropaga-
tion [9] process only depends on the training samples with large errors, i.e.,
‖f(φ〈Γ,yn〉;Ω) − ln‖T > 0. Accordingly, we can ignore the samples with small
errors and the backpropagation procedure is significantly accelerated. In this
work, we use β = 0.03.
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3 Optimization of CNN for Tracking

3.1 Online Learning: Iterative SGD with Temporal Sampling

Temporal Sampling Following other CNN-based approaches [9, 10], we used
Stochastic Gradient Decent (SGD) for the learning of the parameters Ω. How-
ever, the SGD we employ is specifically tailored for visual tracking.

Different from detection and recognition tasks, the training sample pool
grows gradually as new frames come in visual tracking. Moreover, it is desired
to learn a consistent object model over all the previous frames and then use it
to distinguish the object from the background in the current frame. This implies
that we can effectively learn a discriminative model on a long-term positive set
and a short-term negative set.

Based on this intuition, we tailor the SGD method by embedding in a
temporal sampling process. In particular, given that the positive sample pool
is Y+

1:t = {y+
1,(1),y

+
2,(1), . . . ,y

+
N−1,(t),y

+
N,(t)} and the negative sample pool is

Y−1:t = {y−1,(1),y
−
2,(1), . . . ,y

−
N−1,(t),y

−
N,(t)}, when generating a mini-batch for

SGD, we sample the positive pool with the probability

Prob(y+
n,(t′)) =

1

tN
, (12)

while sample the negative samples with the probability

Prob(y−n,(t′)) =
1

Z
exp

[
−σ(t− t′)2

]
, (13)

where 1
Z is the normalization term and we use σ = 10 in this work.

In a way, the above temporal selection mechanism can be considered to be
similar to the “multiple-lifespan” data sampling [20]. However, [20] builds three
different codebooks, each corresponding to a different lifespan, while we learn
one discriminative model based on two different sampling distributions.

Iterative Stochastic Gradient Descent (IT-SDG) Recall that we use mul-
tiple image cues as the input of the CNN tracker. This leads to a CNN with
higher complexity, which implies a low training speed and a high possibility of
overfitting. By noticing that each image cue may be weakly independent, we
train the network in a iterative manner. In particular, we define the model pa-
rameters as Ω = {w1

cov, · · · ,wK
cov,w

1
fc, · · · ,wK

fc}, where wk
cov denotes the filter

parameters in cue-k while wk
fc corresponds to the fully-connected layer. After

we complete the training on wk
cov, we evaluate the filter responses from all the

cues in the fully-connected layer and then jointly update {w1
fc, · · · ,wK

fc} with
a small learning rate (see Algorithm 1). This can be regarded as a coordinate-
descent variation of SGD. In practice, we found out both the temporal sampling
mechanism and the IT-SDG significantly curb the overfitting problem.
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Algorithm 1 Iterative SGD with temporal sampling

1: Inputs: Frame image Γ(t); Two sample pools Y+
1:t, Y

−
1:t;

2: CNN model (K cues) f(φ〈Γ(t), ·〉;Ω = {w1
cov, · · · ,wK

cov,w
1
fc, · · · ,wK

fc}).
3: Estimated/given y∗;
4: Learning rates r̂ = r

K
; minimal loss ε; training step budget M � K.

5: procedure IT-SGD(Y+
1:t, Y

−
1:t, f , y∗, r̂, r, M)

6: Sample samples from Y+
1:t and Y−

1:t, according to 12 and 13.
7: Save the selected samples in Y = {y1,y2, . . . ,yN} with labels l1, l2, · · · , lN .
8: for m← 1, M − 1 do

9: Calculate loss Lm = 1
N

N∑
n=1

[
(∆(yn,y

∗)− r(yn,Y∗)) ·
∥∥fm(φ〈Γ(t),yn〉;Ω)− ln

∥∥
T

]
10: If L ≤ ε, break;
11: k = mod(m,K) + 1;
12: Update wk

cov using SGD with learning rate r for fm;
13: Jointly update {w1

fc, · · · ,wK
fc} for fm, with step length r̂;

14: Save fm+1 = fm;
15: end for
16: end procedure
17: Outputs: New CNN model f∗ = fm∗ ,m

∗ = argmaxm Lm.

3.2 Lazy Update and the Overall Work Flow

It is straightforward to updating the CNN model using the IT-SGD algorithm at
each frame. However, this could be computationally expensive as the complexity
of training processes would dominate the complexity of the whole algorithm. On
the other hand, in case the appearance of the object is not always changing, a
well-learned appearance model can remain discriminant for a long time.

Motivated by this, we propose to update the CNN model in a lazy manner.
When tracking the object, we only update the CNN model when the training
loss L1 is above 2ε. Once the training start, the training goal is to reduce L
below ε. As a result, usually L1 < 2ε holds in a number of the following frames,
and thus no training is required for those frames. This way, we accelerate the
tracking algorithm significantly (Figure 3).

4 Experiments

Video sequences and algorithms compared We evaluate our method on
18 benchmark video sequences that cover most challenging tracking scenarios
such as scale changes, illumination changes, occlusions, cluttered backgrounds
and fast motion. The first frames of these sequences are shown in Figure 4.

We compare our method with 5 other state-of-the-art trackers including TLD
[21], CXT [22], ASLA [23], Struck [4], SCM [24], and 4 classical tracking algo-
rithms, e.g., Frag [3], CPF [1], IVT [25] and MIL [14].
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Fig. 3. Work flow of proposed algorithm. The bottom row shows the three-stages op-
erations on a frame: test, estimation and training. In the training frames, the green
bounding-boxes are the negative samples while the red ones denote the positive sam-
ples. The dashed block covers the positive sample pool Y+ (red) and negative sample
pool Y− (green). In each pool, the edges of the sample patches indicate their sampling
importances. The thicker the edge, the more possible it will be selected for training.

Fig. 4. The first frames of the selected video sequences. From top left to bottom right:
David, Jumping, David2, Trellis, Fish, Car4, CarDark, Girl, Singer2, Skating1, Shaking,
FaceOcc2, FaceOcc1, Singer1, Deer, Dudek, Sylvester, MountainBike. The red blocks
are the initialization in the first frame.

Performance measurements The tracking results are evaluated via the fol-
lowing two measurements: 1) Tracking Precision (TP), the percentage of the
frames whose estimated location is within the given distance-threshold (τd) to
the ground truth, and 2) Tracking Success Rate (TSR), the percentage of the
frames in which the overlapping score defined in Equation 4 between the esti-
mated location and the ground truth is larger than a given overlapping-threshold
(τo). For a fair comparison, we run our algorithm for 5 times and then report
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the average TP/TSR scores. The results of other visual trackers are obtained
from [26]. We run our algorithm in Matlab with an unoptimized code mixed with
CUDA-PTX kernels for the CNN implementation. The hardware environment
includes one quad-core CPU and a NVIDIA GTX580.

Parameter setting Most parameters of the CNN tracker are given in Sec. 2
and Sec. 3. In addition, there are some motion parameters for sampling the
image patches. In this work, we only consider the displacement ∆x, ∆y and the
relative scale s of the object7. In a new frame, we sample 1500 random patches
in a Gaussian Distribution which centers on the previous predicted state. The
standard deviation for the three dimensions are 10, 10 and 0.02, respectively.
Note that, all parameters are fixed for all videos for most objective evaluation;
no parameter tuning is performed for any specific video sequence.

Main comparison results Firstly, we evaluate all algorithms using fixed
thresholds, i.e. τd = 15, τo = 0.5, which is a common setting in tracking evalu-
ations. Results are given in Table 1. Specifically, the score of TP and TSR are
shown in each table block. The average performance is also reported for each
tracker.

We can see that, our method achieves much better overall average results
compared with other trackers. The performance gap between our method and
the reported best result in the literature are 9% for the TP measure: our method
achieves 83% accuracy while the best state-of-the-art is 74% (SCM method).
For the TSR measure, our method is 7% better than the existing methods: our
method gives 83% accuracy while the best state-of-the-art is 76% (SCM method).
Furthermore, our CNN tracker have ranked as the best method for 17 times.
These numbers for Struck, ASLA and SCM are 16, 13, 9, respectively. Another
observation from the Table 1 is that, our method rarely performs inaccurately;
89% of the time our score is within the top scores (no less then 80% of the highest
score for one sequence). As visible, our tracker is robust to dramatic appearance
changes, e.g. due to motion blurs (Jumping and Deer) or illumination variations
(Fish, Trellis and Singer2).

In fact, the superiority of our method becomes more clear when the exper-
iments with different measurement criteria (different τd, τo) are conducted. In
specific, for TP, we evaluate the trackers with the thresholds τd = 1, 2, · · · , 50
while for TSR, we use the thresholds τo = 0 to 1 at the step of 0.05. According
to the scores under different criteria, we generate the precision curves and the
success-rate curves for each tracking method, which is shown in Figure 5.

From the score plots we can see that, overall the CNN tracker ranks the first
(red curves) for both TP and TSR evaluations. Our algorithm is very robust
when τo < 0.68 and τd > 7 as it outperform all other trackers. The CNN tracker
rarely misses the target completely. Having mentioned that when the overlap
thresholds are tight (e.g. τo > 0.8 or τd < 5), our tracker has similar response to
rest of the trackers we tested.
7 s = h/32, where h is object’s height
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CNN TLD CXT ASLA Struck SCM Frag CPF IVT MIL
david 0.84/0.80 1.00/0.97 1.00/0.83 1.00/0.96 0.32/0.24 1.00/0.91 0.13/0.12 0.11/0.03 0.95/0.79 0.42/0.23
jumping 1.00/1.00 0.98/0.85 0.86/0.29 0.29/0.17 1.00/0.80 0.14/0.12 0.96/0.85 0.14/0.11 0.18/0.10 0.76/0.48
david2 1.00/1.00 1.00/0.95 1.00/1.00 1.00/0.95 1.00/1.00 1.00/0.91 0.31/0.30 1.00/0.46 1.00/0.93 0.69/0.32
trellis 0.99/0.98 0.48/0.47 0.88/0.81 0.86/0.86 0.83/0.78 0.86/0.85 0.35/0.36 0.22/0.17 0.32/0.31 0.17/0.24
faceocc2 0.90/0.92 0.69/0.83 0.98/0.95 0.67/0.81 0.99/1.00 0.74/0.87 0.54/0.75 0.29/0.35 0.91/0.91 0.55/0.94
faceocc1 0.59/1.00 0.04/0.83 0.19/0.77 0.13/0.31 0.24/1.00 0.65/1.00 0.83/1.00 0.18/0.52 0.34/0.98 0.15/0.76
dudek 0.19/0.33 0.50/0.84 0.73/0.92 0.61/0.90 0.78/0.98 0.80/0.98 0.48/0.59 0.45/0.69 0.84/0.97 0.57/0.86
singer1 0.74/0.89 0.98/0.99 0.80/0.32 1.00/1.00 0.56/0.30 1.00/1.00 0.23/0.22 0.94/0.32 0.81/0.48 0.33/0.28
deer 1.00/1.00 0.73/0.73 0.94/0.92 0.03/0.03 1.00/1.00 0.03/0.03 0.18/0.21 0.04/0.04 0.03/0.03 0.08/0.13
fish 1.00/1.00 0.98/0.96 1.00/1.00 1.00/1.00 1.00/1.00 0.84/0.86 0.52/0.55 0.09/0.10 1.00/1.00 0.34/0.39
car4 1.00/0.85 0.86/0.79 0.30/0.30 1.00/1.00 0.97/0.40 0.97/0.97 0.18/0.21 0.03/0.02 1.00/1.00 0.35/0.28
carDark 0.92/0.88 0.61/0.53 0.71/0.69 1.00/1.00 1.00/1.00 1.00/1.00 0.39/0.25 0.11/0.02 0.77/0.70 0.27/0.18
singer2 0.87/0.91 0.04/0.10 0.05/0.04 0.03/0.04 0.03/0.04 0.11/0.16 0.16/0.20 0.08/0.14 0.04/0.04 0.18/0.48
sylvester 0.82/0.58 0.94/0.93 0.76/0.75 0.78/0.75 0.93/0.93 0.89/0.89 0.68/0.68 0.79/0.71 0.68/0.68 0.54/0.55
girl 0.94/0.84 0.87/0.76 0.74/0.64 1.00/0.91 1.00/0.98 1.00/0.88 0.63/0.54 0.69/0.54 0.36/0.19 0.51/0.29
mountainbike 0.55/0.68 0.25/0.26 0.28/0.28 0.78/0.86 0.86/0.90 0.86/0.96 0.13/0.14 0.08/0.15 0.87/0.98 0.52/0.57
shaking 0.79/0.93 0.33/0.40 0.05/0.11 0.25/0.38 0.08/0.17 0.70/0.90 0.07/0.07 0.14/0.12 0.01/0.01 0.18/0.23
skating1 0.77/0.34 0.26/0.23 0.20/0.12 0.76/0.69 0.29/0.37 0.72/0.42 0.14/0.12 0.20/0.19 0.08/0.07 0.12/0.10
Overall 0.83/0.83 0.64/0.69 0.64/0.60 0.68/0.70 0.71/0.71 0.74/0.76 0.38/0.40 0.31/0.26 0.57/0.56 0.37/0.41

Table 1. The tracking scores of the proposed method and other visual trackers. The
reported results are shown in the order of “TP/TSR”. The top scores are shown in red
for each row. For CNN tracker, a score is shown in blue if it is higher than 80% of the
highest value in that row.
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Fig. 5. The Precision Plot (left) and the Success Plot (right). The color of one curve
is determined by the rank of the corresponding trackers, not their names.

In many applications, it is more important to not to loose the target object
than very accurately locate its bounding box. As visible, our tracker rarely looses
the object. Usually the object is much smaller than the frame and there is no
big difference between 68% overlapping and 90% for users in this scenario.

Verification for loss function and the temporal sampling Here we verify
the two proposed modifications to the CNN model. We rerun the whole exper-
iment using the CNN tracker without one or both of the modifications. The
scores of our CNN tracker with different settings are reported in Table 2.

From the table we can see that, both the robust structural loss and the tem-
poral sampling method contribute the success of our CNN tracker. In particular,
the temporal sampling plays a more important role and the robust structural
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david Jumping david2 trellis faceOcc2 faceocc1 dudek singler1 deer
CNN-std 0.67/0.64 0.05/0.05 0.27/0.26 0.76/0.79 0.93/0.95 0.46/0.88 0.01/0.21 0.95/0.91 0.95/1.00
CNN-NoTemp 0.65/0.62 0.29/0.28 0.65/0.63 0.78/0.79 0.79/0.72 0.35/0.81 0.06/0.22 0.83/0.97 0.99/1.00
CNN-NoStruct 0.88/0.69 0.68/0.68 1.00/0.99 0.97/0.96 0.79/0.72 0.40/0.99 0.12/0.27 0.68/0.81 1.00/1.00
CNN-ours 0.84/0.80 1.00/1.00 1.00/1.00 0.99/0.98 0.90/0.92 0.59/1.00 0.19/0.33 0.74/0.89 1.00/1.00

fish car4 carDark singer2 sylvester girl mountainbike shaking sylvester overall
CNN-std 1.00/1.00 0.15/0.18 1.00/0.99 0.54/0.60 0.54/0.44 0.08/0.08 0.93/0.92 0.43/0.50 0.61/0.09 0.57/0.58
CNN-NoTemp 0.97/1.00 0.85/0.66 0.88/0.67 0.54/0.59 0.67/0.50 0.52/0.35 0.85/0.81 0.22/0.32 0.39/0.08 0.63/0.61
CNN-NoStruct 1.00/1.00 1.00/0.87 1.00/1.00 0.83/0.90 0.86/0.75 0.85/0.63 0.59/0.82 0.75/0.84 0.54/0.28 0.77/0.79
CNN-ours 1.00/1.00 0.99/0.85 0.92/0.88 0.87/0.91 0.82/0.58 0.94/0.84 0.55/0.68 0.79/0.93 0.77/0.34 0.83/0.83

Table 2. The performance comparison between CNN tracker variations.
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Fig. 6. The Precision Plot (left) and the Success Plot (right). The color of one curve
is determined by the rank of the corresponding trackers, not their names.

loss further increase the accuracy by 5%. Similar to the previous evaluation, we
plot the precision-curves and the success-rate curves for the CNN tracker with
different settings. The curves consistently go up when the components are added
into the CNN model. That indicates the validity of the propose modifications.

Some tracking examples In Figure 7 we show the tracking results of our CNN
tracker comparing with three state-of-the-art trackers (SCM, Struck and ASLA)
and three classical tracking methods (IVT, MIL, CPF), on 9 video sequences.
Here we show some good results obtained by using our algorithm (row 1 to row
7) and some sequences on which the CNN tracker is outperformed by the other
trackers (the last two rows). We can see that, even for the “failure” cases, the
CNN tracker does not lose the target while is only “kidnapped” by some local
part of the object (the human for the mountainbike).

5 Conclusion

We introduced a CNN based online object tracker. We employed a CNN archi-
tecture and a robust structural loss function that handles multiple input cues.
We also proposed to modify the ordinary Stochastic Gradient Descent for vi-
sual tracking by iteratively update the parameters and add a temporal sampling
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Fig. 7. Tracking results of the CNN tracker compared with other 6 visual trackers.
The tracker are shown in different colors: green–CNN tracker; red–Struck; blue–SCM;
black–CPF; yellow–ASLA; cyan–IVT; magenta–MIL; white–ground-truth. In each row,
the 6 frames roughly span the whole sequence.

mechanism in the mini-batch generation. This tracking-tailored SGD algorithm
increase the speed and the robustness of the training process significantly. Our
experiments demonstrate that the CNN-based tracking algorithm performs very
well on 18 benchmark sequences and achieves the comparable tracking speed to
some state-of-the-art trackers.
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